Regression tree models for designed experiments
نویسنده
چکیده
Although regression trees were originally designed for large datasets, they can profitably be used on small datasets as well, including those from replicated or unreplicated complete factorial experiments. We show that in the latter situations, regression tree models can provide simpler and more intuitive interpretations of interaction effects as differences between conditional main effects. We present simulation results to verify that the models can yield lower prediction mean squared errors than the traditional techniques. The tree models span a wide range of sophistication, from piecewise constant to piecewise simple and multiple linear, and from least squares to Poisson and logistic regression.
منابع مشابه
Real-time quality monitoring in debutanizer column with regression tree and ANFIS
A debutanizer column is an integral part of any petroleum refinery. Online composition monitoring of debutanizer column outlet streams is highly desirable in order to maximize the production of liquefied petroleum gas. In this article, data-driven models for debutanizer column are developed for real-time composition monitoring. The dataset used has seven process variables as inputs and the outp...
متن کاملEstimating Height and Diameter Growth of Some Street Trees in Urban Green Spaces
Estimating urban trees growth, especially tree height is very important in urban landscape management. The aim of the study was to predict of tree height base on tree diameter. To achieve this goal, 921 trees from five species were measured in five areas of Mashhad city in 2014. The evaluated trees were ash tree (Fraxinus species), plane tree (Platanus hybrida), white mulberry (Morus alba), ail...
متن کاملShuffled Frog-Leaping Programming for Solving Regression Problems
There are various automatic programming models inspired by evolutionary computation techniques. Due to the importance of devising an automatic mechanism to explore the complicated search space of mathematical problems where numerical methods fails, evolutionary computations are widely studied and applied to solve real world problems. One of the famous algorithm in optimization problem is shuffl...
متن کاملComparison of Gestational Diabetes Prediction Between Logistic Regression, Discriminant Analysis, Decision Tree and Artificial Neural Network Models
Background and Objectives: Gestational Diabetes Mellitus (GDM) is the most common metabolic disorder in pregnancy. In case of early detection, some of its complications can be prevented. The aim of this study was to investigate early prediction of GDM by logistic regression (LR), discriminant analysis (DA), decision tree (DT) and perceptron artificial neural network (ANN) and to compare these m...
متن کاملمقایسه دقت پیشبینی رگرسیون لجستیک و درخت ردهبندی در تعیین عوامل خطر و پیشبینی ابتلا به سرطان پستان
Background and Objectives: Breast cancer is one of the most common malignancies in women which accounts for the highest number of deaths after lung cancer. The aim of the current study was to compare the logistic regression and classification tree models in determining the risk factors and prediction of breast cancer. Methods: We used from the data of a case-control study conducted on 303 pa...
متن کامل